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Abstract

Orthogonal Matching Pursuit (OMP) is the canonical greedy algorithm for sparse approxi-
mation. In this paper we demonstrate that the restricted isometry property (RIP) can be used
for a very straightforward analysis of OMP. Our main conclusion is that the RIP of order K +1
(with isometry constant δ < 1

3

√

K
) is sufficient for OMP to exactly recover any K-sparse sig-

nal. Our analysis relies on simple and intuitive observations about OMP and matrices which
satisfy the RIP. For restricted classes of K-sparse signals (those that are highly compressible),
a relaxed bound on the isometry constant is also established. A deeper understanding of OMP
may benefit the analysis of greedy algorithms in general. To demonstrate this, we also briefly
revisit the analysis of the Regularized OMP (ROMP) algorithm.

1 Introduction

1.1 Orthogonal Matching Pursuit

Orthogonal Matching Pursuit (OMP) is the canonical greedy algorithm for sparse approximation.
Letting Φ denote a matrix of size M×N (where typically M < N) and y denote a vector in R

M , the
goal of OMP is to recover a coefficient vector x̂ ∈ R

N with roughly K < M nonzero terms so that
Φx̂ equals y exactly or approximately. OMP is frequently used to find sparse representations for
signals y ∈ R

M in settings where Φ represents an overcomplete dictionary for the signal space [1–
3]. It is also commonly used in compressive sensing (CS), where y = Φx represents compressive
measurements of a sparse or nearly-sparse signal x ∈ R

N to be recovered [4–6].
One of the attractive features of OMP is its simplicity. The entire algorithm is specified in

Algorithm 1, and it requires approximately the same number of lines of code to implement in a
software package such as Matlab. Despite its simplicity, OMP is empirically competitive in terms
of approximation performance [3, 7].

Theoretical analysis of OMP to date has concentrated primarily on two fronts. The first has
involved the notion of a coherence parameter µ := maxi,j |〈φi, φj〉|, where φi denotes column i of the
matrix Φ. When the columns of Φ have unit norm and µ < 1

2K−1 , it has been shown [3] that OMP
will recover any K-sparse signal x from the measurements y = Φx. This guarantee is deterministic
and applies to any matrix Φ having normalized columns and µ < 1

2K−1 .
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Algorithm 1 Orthogonal Matching Pursuit

input: Φ, y, stopping criterion
initialize: r0 = y, x0 = 0, Λ0 = ∅, ℓ = 0
while not converged do

match: hℓ = ΦT rℓ

identify: Λℓ+1 = Λℓ ∪ {arg maxj |hℓ(j)|} (if multiple maxima exist, choose only one)
update: xℓ+1 = argminz: supp(z)⊆Λℓ+1‖y − Φz‖2

rℓ+1 = y − Φxℓ+1

ℓ = ℓ + 1
end while
output: x̂ = xℓ = argminz: supp(z)⊆Λℓ‖y − Φz‖2

The second analytical front has involved the notion of probability. Suppose x ∈ R
N with

‖x‖0 := |supp(x)| ≤ K and that Φ is drawn from a suitable random distribution (independently
of x) with M = O(K log(N)) rows. Then with high probability, OMP will recover x exactly from
the measurements y = Φx [6]. It is not guaranteed, however, that any such fixed matrix will allow
recovery of all sparse x simultaneously.

1.2 The Restricted Isometry Property

As an alternative to coherence and to probabilistic analysis, a large number of algorithms within the
broader field of CS have been studied using the restricted isometry property (RIP) for the matrix
Φ [8]. A matrix Φ satisfies the RIP of order K if there exists a constant δ ∈ (0, 1) such that

(1 − δ)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δ)‖x‖2
2 (1)

holds for all x such that ‖x‖0 ≤ K. In other words, Φ acts as an approximate isometry on the
set of vectors that are K-sparse. Much is known about finding matrices that satisfy the RIP. For
example, if we draw a random M × N matrix Φ whose entries φij are independent and identically
distributed sub-Gaussian random variables, then provided that

M = O

(
K log(N/K)

δ2

)
, (2)

with high probability Φ will satisfy the RIP of order K [9, 10].
When it is satisfied, the RIP for a matrix Φ provides a sufficient condition to guarantee successful

sparse recovery using a wide variety of algorithms [8, 11–19]. As an example, the RIP of order
2K (with isometry constant δ <

√
2 − 1) is a sufficient condition to permit ℓ1-minimization (the

canonical convex optimization problem for sparse approximation) to exactly recover any K-sparse
signal and to approximately recover those that are nearly sparse [11]. The same RIP assumption
is also a sufficient condition for robust recovery in noise using a modified ℓ1-minimization [11].

Despite the considerable attention that has been paid to both OMP and the RIP, analysis
of OMP using the RIP has been relatively elusive to date. However, several alternative greedy
algorithms have been proposed—all essentially modifications of OMP—that are apparently much
more amenable to RIP-based analysis. The Regularized Orthogonal Matching Pursuit (ROMP) [13,
14] and Subspace Pursuit (SP) [16] algorithms differ from OMP in the identification step, while the
Compressive Sampling Matching Pursuit (CoSaMP) [15] and DThresh [17] algorithms differ from
OMP in both the identification and the update steps. For each of these algorithms it has been
shown that the RIP of order CK (where C ≥ 2 is a constant depending on the algorithm) with δ
adequately small is sufficient for exact recovery of K sparse signals.
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1.3 Contributions

Our contributions in this paper are twofold. First, we begin in Section 2 with some very simple
observations regarding OMP. Many of these facts are known to practitioners in the field but may
not be obvious to a novice, and we feel that such readers may find value in a short exposition.

Critically, these observations also set the stage for our main results in Section 3, in which we
demonstrate that the RIP can be used for a very straightforward analysis of OMP. Our analysis
revolves around three key facts: (1) that in each step of the algorithm, the residual vector rℓ can
be written as a matrix times a sparse signal, (2) that this matrix satisfies the RIP, and (3) that
consequently a sharp bound can be established for the vector hℓ of inner products. Our main
conclusion, Theorem 3.1, states that the RIP of order K + 1 (with δ < 1

3
√

K
) is sufficient for OMP

to exactly recover any K-sparse signal in exactly K iterations. However, for restricted classes of
K-sparse signals (those with sufficiently strong decay in the nonzero coefficients), a relaxed bound
on the isometry constant can be used. We discuss such extensions of our results in Section 4. A
deeper understanding of OMP may also benefit the analysis of greedy algorithms in general. To
demonstrate this, we briefly revisit the analysis of the ROMP algorithm in Section 4.

1.4 Context

Let us place Theorem 3.1 in the context of the OMP literature. Using the RIP as a sufficient
condition to guarantee OMP performance is apparently novel. Moreover, the fact that our bound
requires only the RIP of order K +1 is apparently unique among the published CS literature; much
more common are results requiring the RIP of order 1.75K [12], 2K [11, 13], 3K [16, 18], 4K [15],
and so on. Of course, such results often permit the isometry constant to be much larger.1

If one wishes to use the RIP of order K + 1 as a sufficient condition for exact recovery of all
K-sparse signals via OMP (as we have), then little improvement is possible in relaxing the isometry
constant δ above 1

3
√

K
. In particular, there exists a matrix satisfying the RIP of order K + 1 with

δ ≤ 1√
K

for which there exists a K-sparse signal x ∈ R
N that cannot be recovered exactly via K

iterations of OMP. (This is conjectured in [16] with a suggestion for constructing such a matrix,
and for the case K = 2 we have confirmed this via experimentation.)

Unfortunately, from (2) we see that finding a matrix Φ satisfying the RIP of order K + 1 with
an isometry constant δ < 1

3
√

K
may require M = O(K2 log(N/K)) random measurements. If

one wishes to guarantee exact recovery of all K-sparse signals via OMP (as we have), then little
improvement is possible in relaxing this number. In particular, it has been argued [20] that when
M . K3/2, for most random M ×N matrices Φ there will exist some K-sparse signal x ∈ R

N that
cannot be recovered exactly via K iterations of OMP.

It is also worth comparing our RIP-based analysis with coherence-based analysis [3], as both
techniques provide a sufficient condition for OMP to recover all K-sparse signals. It has been
shown [6] that in a random M × N matrix, the coherence parameter µ is unlikely to be smaller
than log(N)/

√
M . Thus, to ensure µ < 1

2K−1 , one requires M = O(K2 log2(N)), which is roughly
the same as what is required by our analysis. We note that neither result is strictly stronger
than the other; we have confirmed experimentally that there exist matrices that satisfy our RIP
condition but not the coherence condition, and vice versa.

Finally, we note that the aforementioned modifications of OMP (the ROMP, SP, CoSaMP, and
DThresh algorithms) all have RIP-based guarantees of robust recovery in noise and stable recovery

1Note that a smaller order of the RIP is not necessarily a weaker requirement if the required constant is also
significantly smaller. For example, Corollary 3.4 of [15] implies that if Φ satisfies the RIP of order K + 1 with
constant δ, then Φ also satisfies the RIP of order 2K with constant 4δ.
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of non-sparse signals. To date, no such RIP-based or coherence-based guarantees have been provided
for OMP itself. We speculate that our perspective may help to further the understanding of OMP
and perhaps provide a route to such a guarantee. At present, however, this remains a topic of
ongoing work.

1.5 Notation

Before proceeding, we set our notation. Suppose Λ ⊂ {1, 2, . . . ,N}. We let Λc = {1, 2, . . . ,N}\Λ.
By x|Λ we mean the length |Λ| vector containing the entries of x indexed by Λ.

By ΦΛ we mean the M × |Λ| matrix obtained by selecting the columns of Φ indexed by Λ, and
by R(ΦΛ) we mean the range, or column space, of ΦΛ. We will assume throughout that when

|Λ| ≤ M , ΦΛ is full rank, in which case we let Φ†
Λ := (ΦT

ΛΦΛ)−1ΦT
Λ denote the Moore-Penrose

pseudoinverse of ΦΛ.
We denote the orthogonal projection operator onto R(ΦΛ) by PΛ := ΦΛΦ†

Λ. Similarly, P⊥
Λ :=

(I −PΛ) is the orthogonal projection operator onto the orthogonal complement of R(ΦΛ). We note
that any orthogonal projection operator P obeys P = P T = P 2.

Finally, we define AΛ := P⊥
Λ Φ. This matrix is the result of orthogonalizing the columns of Φ

against R(ΦΛ). It is therefore equal to zero on columns indexed by Λ.

2 Observations

Let us begin with some very simple observations regarding OMP as presented in Algorithm 1.
The key idea is to try to iteratively estimate a set Λ that contains the locations of the nonzeros
of x by starting with Λ = ∅ and then adding a new element to Λ in each iteration. In order
to select which element to add, the algorithm also maintains a residual vector r /∈ R(ΦΛ) that
represents the component of the measurement vector y that cannot be explained by the columns
of ΦΛ. Specifically, at the beginning of the ℓth iteration, Λℓ is our current estimate of supp(x), and
the residual rℓ is defined as rℓ = y − Φxℓ where supp(xℓ) ⊆ Λℓ. The element added to Λℓ is the
index of the column of Φ that has the largest inner product with rℓ.

Our first observation is that rℓ can be viewed as the orthogonalization of y against the previously
chosen columns of Φ. To see this, note that the solution to the least squares problem in the update
step is given by

xℓ|Λℓ = Φ†
Λℓ

y and xℓ|(Λℓ)c = 0. (3)

Thus we observe that

rℓ = y − Φxℓ = y − ΦΛℓΦ
†
Λℓ

y = (I − PΛℓ)y = P⊥
Λℓy.

Note that it is not actually necessary to explicitly compute xℓ in order to calculate rℓ.
Our second observation is that, in the matching step, one may correlate rℓ either with the

columns of Φ or with the columns of AΛℓ . To see this equivalence, observe that rℓ = P⊥
Λℓy =

P⊥
ΛℓP

⊥
Λℓy = (P⊥

Λℓ)
T P⊥

Λℓy and so

hℓ = ΦT rℓ = ΦT (P⊥
Λℓ)

T P⊥
Λℓy = AT

Λℓr
ℓ. (4)

Incidentally, along these same lines we observe that

hℓ = ΦT rℓ = ΦT P⊥
Λℓy = ΦT (P⊥

Λℓ)
T y = AT

Λℓy.

4



From this we note that it is not actually necessary to explicitly compute rℓ in order to calculate
the inner products during the matching step; in fact, the original formulation of OMP was stated
with instructions to orthogonalize the remaining columns of Φ against those previously chosen
and merely correlate the resulting vectors against y [1, 2]. Additionally, we recall that, in AΛℓ , all
columns indexed by Λℓ will be zero. It follows that

hℓ(j) = 0 ∀j ∈ Λℓ, (5)

and so, since Λℓ = Λℓ−1 ∪ {j∗} with j∗ /∈ Λℓ−1,

|Λℓ| = ℓ. (6)

Our third observation is that, in the case of noise-free measurements y = Φx, we may write

rℓ = P⊥
Λℓy = P⊥

ΛℓΦx = AΛℓx.

Again recalling that all columns of AΛℓ indexed by Λℓ are zero, we thus note that when supp(x) ⊆
Λℓ, rℓ = 0, and from (3) we also know that xℓ = x exactly. It will also be useful to note that for
the same reason, we can also write

rℓ = AΛℓ x̃ℓ, (7)

where
x̃ℓ|Λℓ = 0 and x̃ℓ|(Λℓ)c = x|(Λℓ)c . (8)

3 Analysis

Our analysis of OMP will center on the vector hℓ. In light of (4) and (7), we see that AΛℓ plays a
role both in constructing and in analyzing the residual vector. In Lemma 3.2 below, we show that
the matrix AΛℓ satisfies a modified version of the RIP. This allows us to very precisely bound the
values of the inner products in the vector hℓ.

We begin with two elementary lemmas whose proofs are given in the Appendix. Our first
result, which is a straightforward generalization of Lemma 2.1 of [11], states that RIP operators
approximately preserve inner products between sparse vectors.

Lemma 3.1 Let u, v ∈ R
N be given, and suppose that a matrix Ψ satisfies the RIP of order

max(‖u + v‖0, ‖u − v‖0) with isometry constant δ. Then

|〈Ψu,Ψv〉 − 〈u, v〉| ≤ δ‖u‖2‖v‖2. (9)

One consequence of this result is that sparse vectors that are orthogonal in R
N remain nearly

orthogonal after the application of Ψ. From this observation, it was demonstrated independently
in [21] and [16] that if Φ has the RIP, then AΛ satisfies a modified version of the RIP.

Lemma 3.2 Suppose that Φ satisfies the RIP of order K with isometry constant δ, and let Λ ⊂
{1, 2, . . . ,N}. If |Λ| < K then

(
1 − δ

1 − δ

)
‖u‖2

2 ≤ ‖AΛu‖2
2 ≤ (1 + δ)‖u‖2

2 (10)

for all u ∈ R
N such that ‖u‖0 ≤ K − |Λ| and supp(u) ∩ Λ = ∅.
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In other words, if Φ satisfies the RIP of order K, then AΛ acts as an approximate isometry on
every (K−|Λ|)-sparse vector supported on Λc. From (7), we recall that the residual vector in OMP
is formed by applying AΛℓ to a sparse vector supported on (Λℓ)c. Combining the above results,
then, we may bound the inner products hℓ(j) as follows.

Lemma 3.3 Let Λ ⊂ {1, 2, . . . ,N} and suppose x̃ ∈ R
N with supp(x̃) ∩ Λ = ∅. Define

h = AT
ΛAΛx̃. (11)

Then if Φ satisfies the RIP of order ‖x̃‖0 + |Λ| + 1 with isometry constant δ, we have

|h(j) − x̃(j)| ≤ δ

1 − δ
‖x̃‖2 (12)

for all j /∈ Λ.

Proof: From Lemma 3.2 we have that the restriction of AΛ to the columns indexed by Λc

satisfies the RIP of order (‖x̃‖0 + |Λ| + 1) − |Λ| = ‖x̃‖0 + 1 with isometry constant δ/(1 − δ). By
the definition of h, we also know that

h(j) = 〈AΛx̃, AΛej〉,

where ej denotes the jth vector from the cardinal basis. Now, suppose j /∈ Λ. Then because
‖x̃ ± ej‖0 ≤ ‖x̃‖0 + 1 and supp(x̃ ± ej) ∩ Λ = ∅, we conclude from Lemma 3.1 that

|h(j) − x̃(j)| = |〈AΛx̃, AΛej〉 − 〈x̃, ej〉| ≤
δ

1 − δ
‖x̃‖2‖ej‖2.

Noting that ‖ej‖2 = 1, we reach the desired conclusion. �

With this bound on the inner products hℓ(j), we may derive a sufficient condition under which
the identification step of OMP will succeed.

Corollary 3.1 Suppose that Λ, Φ, x̃ meet the assumptions specified in Lemma 3.3, and let h be as
defined in (11). If

‖x̃‖∞ >
2δ

1 − δ
‖x̃‖2, (13)

we are guaranteed that arg maxj |h(j)| ∈ supp(x̃).

Proof: If (12) is satisfied, then for indices j /∈ supp(x̃), we will have |h(j)| ≤ δ
1−δ‖x̃‖2.

(Recall from (5) that h(j) = 0 for j ∈ Λ.) If (13) is satisfied, then there exists some j ∈ supp(x̃)
with |x̃(j)| > 2δ

1−δ‖x̃‖2. From (12) and the triangle inequality, we conclude that for this index j,

|h(j)| > δ
1−δ‖x̃‖2. �

By choosing δ small enough, it is possible to guarantee that the condition (13) is satisfied. In
particular, the lemma below follows from standard arguments.

Lemma 3.4 For any u ∈ R
N , ‖u‖∞ ≥ ‖u‖2/

√
‖u‖0.

Putting these results together, we can now establish our main theorem concerning OMP.

Theorem 3.1 Suppose that Φ satisfies the RIP of order K + 1 with isometry constant δ < 1
3
√

K
.

Then for any x ∈ R
N with ‖x‖0 ≤ K, OMP will recover x exactly from y = Φx in K iterations.

6



Proof: The proof works by induction. We start with the first iteration where h0 = ΦTΦx and
note that Φ = A∅. Because ‖x‖0 ≤ K, Lemma 3.4 states that ‖x‖∞ ≥ ‖x‖2√

K
. One can also check

that δ < 1
3
√

K
implies that 2δ

1−δ < 1√
K

. Therefore, we are guaranteed that (13) is satisfied, and so

from Corollary 3.1 we conclude that arg maxj |h0(j)| ∈ supp(x).
We now consider the general induction step. Suppose that we are at iteration ℓ and that all

previous iterations have succeeded, by which we mean that Λℓ ⊆ supp(x). From (8), we know that
supp(x̃ℓ) ∩ Λℓ = ∅ and that ‖x̃ℓ‖0 ≤ K − ℓ. From (6), we know that |Λℓ| = ℓ. By assumption, Φ
satisfies the RIP of order K + 1 = (K − ℓ) + ℓ + 1 ≥ ‖x̃ℓ‖0 + |Λℓ| + 1. Finally, using Lemma 3.4,
we have that

‖x̃ℓ‖∞ ≥ ‖x̃ℓ‖2√
K − ℓ

≥ ‖x̃ℓ‖2√
K

>
2δ

1 − δ
‖x̃ℓ‖2.

From Corollary 3.1 we conclude that arg maxj |hℓ(j)| ∈ supp(x̃ℓ) and hence Λℓ+1 ⊆ supp(x). �

4 Extensions

4.1 Strongly-decaying sparse signals

For even moderate values of the isometry constant δ there exist sparse signals that we can ensure
are recovered exactly. For example, if the decay of coefficients is sufficiently strong in a sparse
signal, we may use Lemma 3.3 to ensure that the signal entries are recovered in the order of their
magnitude.

For any x ∈ R
N with ‖x‖0 ≤ K we denote by x′(j) the entries of x ordered by magnitude, i.e.,

|x′(1)| ≥ |x′(2)| ≥ · · · ≥ |x′(K)| ≥ 0

with x′(K + 1) = x′(K + 2) = · · · = x′(N) = 0.

Theorem 4.1 Suppose that Φ satisfies the RIP of order K + 1 with isometry constant δ < 1
3 .

Suppose x ∈ R
N with ‖x‖0 ≤ K and that for all j ∈ {1, 2, . . . ,K − 1},

|x′(j)|
|x′(j + 1)| ≥ α.

If

α >
1 + 2 δ

1−δ

√
K − 1

1 − 2 δ
1−δ

, (14)

then OMP will recover x exactly from y = Φx in K iterations.

Proof: The proof again proceeds by induction. At each stage, OMP will choose the largest
entry of x̃ℓ. To see this, note that by (12) we have |hℓ(j)− x̃ℓ(j)| ≤ δ

1−δ‖x̃ℓ‖2. The nonzero entries

of x̃ℓ will be comprised of x′(ℓ + 1), x′(ℓ + 2), . . . , x′(K). Thus,

‖x̃ℓ‖2 ≤
√

|x′(ℓ + 1)|2 + (K − 1)
|x′(ℓ + 1)|2

α2
=

|x′(ℓ + 1)|
α

√
α2 + (K − 1) ≤ |x′(ℓ + 1)|

α
(α+

√
K − 1).

Now, for the largest entry of x̃ℓ, we have

|hℓ(j)| ≥ |x′(ℓ + 1)| − δ

1 − δ

|x′(ℓ + 1)|
α

(α +
√

K − 1) =
|x′(ℓ + 1)|

α
(α − δ

1 − δ
(α +

√
K − 1)) (15)

7



while for all other entries we have

|hℓ(j)| ≤ |x′(ℓ + 2)| + δ

1 − δ

|x′(ℓ + 1)|
α

(α +
√

K − 1) ≤ |x′(ℓ + 1)|
α

(1 +
δ

1 − δ
(α +

√
K − 1)). (16)

From (14), it follows that (15) is greater than (16). �

4.2 Analysis of other orthogonal greedy algorithms

We now demonstrate that the techniques used above can also be used to analyze other orthogonal
greedy algorithms. We focus on ROMP [13, 14] for the purpose of illustration, but similar methods
should be able to simplify the analysis of other orthogonal greedy algorithms such as SP [16].2

We first briefly describe the difference between ROMP and OMP, which lies only in the iden-
tification step: whereas OMP adds only one index to Λℓ at each iteration, ROMP adds up to K
indices to Λℓ at each iteration. Specifically, ROMP first selects the indices corresponding to the K
largest elements in magnitude of hℓ (or all nonzero elements of hℓ if hℓ has fewer than K nonzeros),
and denotes this set as Ωℓ. The next step is to regularize this set so that the values are comparable
in magnitude. To do this, define R(Ωℓ) := {Ω ⊆ Ωℓ : |hℓ(i)| ≤ 2|hℓ(j)| ∀i, j ∈ Ω}, and set

Ωℓ
0 := argmaxΩ∈R(Ωℓ)‖hℓ|Ω‖2,

i.e., Ωℓ
0 is the set with maximal energy among all regularized subsets of Ωℓ. Finally, setting Λℓ+1 =

Λℓ ∪ Ωℓ
0, the remainder of the ROMP algorithm is identical to OMP.

In order to analyze ROMP, we will need only two preliminary lemmas from [13], which we state
without proof. Note that Lemma 4.1, which is essentially a generalization of Lemma 3.3, is stated
using slightly weaker assumptions than those stated in [13]. The present version can easily be
obtained using the same proof.

Lemma 4.1 ((1) in Prop. 3.2 of [13]) Let Γ ⊂ {1, 2, . . . ,N} and x ∈ R
N be given. Then if Ψ

satisfies the RIP of order |supp(x) ∪ Γ| with isometry constant δ, we have

‖(ΨT Ψx)|Γ − x|Γ‖2 ≤ δ‖x‖2.

Lemma 4.2 (Lemma 3.7 of [13]) Let u ∈ R
K , K > 1, be arbitrary. Then there exists a subset

Γ ⊆ {1, . . . ,K} such that |u(i)| ≤ 2|u(j)| for all i, j ∈ Γ and

‖u|Γ‖2 ≥ 1

2.5
√

log2 K
‖u‖2.

Using these lemmas, we now provide a simplified proof of the main result of [13] concerning the
recovery of sparse signals using ROMP.3

Theorem 4.2 Suppose that Φ satisfies the RIP of order 3K with isometry constant δ ≤ 0.13/
√

log2 K.
Then for any x ∈ R

N with ‖x‖0 ≤ K, ROMP will recover x exactly from y = Φx in at most K
iterations.

2Some of the greedy algorithms that have been proposed recently, such as CoSaMP [15] and DThresh [17], do
not orthogonalize the residual against the previously chosen columns at each iteration, and so the techniques above
cannot be directly applied to these algorithms. However, this orthogonalization step could easily be added (which in
the case of CoSaMP yields an algorithm nearly identical to SP). Orthogonalized versions of these algorithms could
then be studied using these techniques.

3Note that we assume that Φ satisfies the RIP of order 3K with constant δ ≤ 0.13/
p

log2 K. Using Corollary 3.4

of [15], we can replace this with the assumption that Φ satisfies the RIP of order 2K with constant δ ≤ .043/
p

log2 K.
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Proof: The proof works by showing that at each iteration,

|Ωℓ
0 ∩ supp(x)| ≥ 1

2
|Ωℓ

0|. (17)

If (17) is satisfied for 0, 1, . . . , ℓ − 1, then at iteration ℓ we have that

|Λℓ ∩ supp(x)| ≥ 1

2
|Λℓ|. (18)

It follows that, before |Λℓ| exceeds 2K, we will have supp(x) ⊆ Λℓ. Because Φ satisfies the RIP of
order 3K > 2K, at termination, ΦΛℓ will be full rank. From (3) we conclude that xℓ = x exactly.

To prove (17), we again proceed by induction. Hence, we assume that (17) holds for 0, 1, . . . , ℓ−1,
and thus (18) holds for iteration ℓ. We next assume for the sake of a contradiction that (17) does
not hold for iteration ℓ, i.e., that

|Ωℓ
0 \ supp(x)| >

1

2
|Ωℓ

0|. (19)

Define the sets T = Ωℓ
0 \ supp(x) and S = supp(x) \ Λℓ = supp(x̃ℓ), where x̃ℓ is defined as in (8).

Recall that we can write hℓ = AT
ΛℓAΛℓ x̃ℓ. Thus, using the assumption that |T | > 1

2 |Ωℓ
0| and the

facts that T ⊆ Ωℓ
0 and Ωℓ

0 ∈ R(Ωℓ), one can show that

‖hℓ|T ‖2 ≥ 1√
5
‖hℓ|Ωℓ

0
‖2. (20)

We now observe that

‖hℓ|Ωℓ
0
‖2 ≥ 1

2.5
√

log2 K
‖hℓ|Ωℓ‖2, (21)

which follows from Lemma 4.2 and the fact that Ωℓ
0 is the maximal regularizing set. From the

maximality of Ωℓ and the fact that |S| ≤ K, we have that ‖hℓ|Ωℓ‖2 ≥ ‖hℓ|S‖2, so that by combining
(20) and (21) we obtain

‖hℓ|T ‖2 ≥ 1

2.5
√

5 log2 K
‖hℓ|S‖2. (22)

Note that |S∪supp(x̃ℓ)| = |S| ≤ K and since |Λℓ| ≤ 2K, from Lemma 3.2 we have that AΛℓ satisfies
the RIP of order at least K with constant δ/(1 − δ), thus Lemma 4.1 implies that

‖hℓ|S − x̃ℓ|S‖2 ≤ δ

1 − δ
‖x̃ℓ‖2.

Since x̃ℓ|S = x̃ℓ, ‖hℓ|S − x̃ℓ|S‖2 = ‖x̃ℓ − hℓ|S‖2 ≥ ‖x̃ℓ‖2 − ‖hℓ|S‖2, and thus

‖hℓ|S‖2 ≥ 1 − 2δ

1 − δ
‖x̃ℓ‖2.

Hence,

‖hℓ|T ‖2 ≥ (1 − 2δ)/(1 − δ)

2.5
√

5 log2 K
‖x̃ℓ‖2. (23)

On the other hand, since |supp(x̃ℓ)| + |Λℓ ∩ supp(x)| = K, from (18) we obtain that |supp(x̃ℓ)| ≤
K − 1

2 |Λℓ|. Thus, |T ∪ supp(x̃ℓ)| ≤ |T | + |supp(x̃ℓ)| ≤ 2K − 1
2 |Λℓ|. Furthermore, AΛℓ satisfies the

RIP of order 3K − |Λℓ| = 3K − 1
2 |Λℓ| − 1

2 |Λℓ|. Since |Λℓ| ≤ 2K, we have that AΛℓ satisfies the RIP
of order at least 2K − 1

2 |Λℓ| with constant δ/(1 − δ). Thus, Lemma 4.1 also implies that

‖hℓ|T ‖2 = ‖hℓ|T − x̃ℓ|T ‖2 ≤ δ

1 − δ
‖x̃ℓ‖2. (24)
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This is a contradiction whenever the right-hand-side of (23) is greater than the right-hand-side of
(24), which occurs when δ < 1/(2 + 2.5

√
5 log2 K). Since log2 K ≥ 1, we can replace this with the

slightly stricter condition δ < 1/((2 + 2.5
√

5)
√

log2 K) ≈ 0.1317/
√

log2 K. �

Observe that when K = 1, this proof (as well as the proofs in [13, 14]) break down since
Lemma 4.2 does not apply. However, when K = 1 the ROMP algorithm simply reduces to OMP.
In this case we can apply Theorem 3.1 to verify that ROMP succeeds when K = 1 provided that
Φ satisfies the RIP of order 2 with isometry constant δ < 1/3.

Appendix

Proof of Lemma 3.1: We first assume that ‖u‖2 = ‖v‖2 = 1. From the fact that

‖u ± v‖2
2 = ‖u‖2

2 + ‖v‖2
2 ± 2〈u, v〉 = 2 ± 2〈u, v〉

and since Ψ satisfies the RIP, we have that

(1 − δ)(2 ± 2〈u, v〉) ≤ ‖Ψu ± Ψv‖2
2 ≤ (1 + δ)(2 ± 2〈u, v〉).

From the parallelogram identity we obtain

〈Ψu,Ψv〉 =
1

4

(
‖Ψu + Ψv‖2

2 − ‖Ψu − Ψv‖2
2

)
≤ (1 + 〈u, v〉)(1 + δ) − (1 − 〈u, v〉)(1 − δ)

2
= 〈u, v〉 + δ.

Similarly, one can show that 〈Ψu,Ψv〉 ≥ 〈u, v〉 − δ, and thus |〈Ψu,Ψv〉 − 〈u, v〉| ≤ δ. The result
follows for u, v with arbitrary norm from the bilinearity of the inner product. �

Proof of Lemma 3.2: From the definition of AΛ we may decompose AΛu as AΛu = Φu − PΛΦu.
Since PΛ is an orthogonal projection, we can write

‖Φu‖2
2 = ‖PΛΦu‖2

2 + ‖AΛu‖2
2. (25)

Our goal is to show that ‖Φu‖2 ≈ ‖AΛu‖2, or equivalently, that ‖PΛΦu‖2 is small. Towards this
end, we note that since PΛΦu is orthogonal to AΛu,

〈PΛΦu,Φu〉 = 〈PΛΦu, PΛΦu + AΛu〉 = 〈PΛΦu, PΛΦu〉 + 〈PΛΦu,AΛu〉 = ‖PΛΦu‖2
2. (26)

Since PΛ is a projection onto R(ΦΛ) there exists a z ∈ R
N with supp(z) ⊆ Λ such that PΛΦu = Φz.

Furthermore, by assumption, supp(u)∩Λ = ∅. Hence 〈u, z〉 = 0 and from the RIP and Lemma 3.1,

|〈PΛΦu,Φu〉|
‖PΛΦu‖2‖Φu‖2

=
|〈Φz,Φu〉|

‖Φz‖2‖Φu‖2
≤ |〈Φz,Φu〉|

(1 − δ)‖z‖2‖u‖2
≤ δ

1 − δ
.

Combining this with (26), we obtain

‖PΛΦu‖2 ≤ δ

1 − δ
‖Φu‖2.

Since we trivially have that ‖PΛΦu‖2 ≥ 0, we can combine this with (25) to obtain
(

1 −
(

δ

1 − δ

)2
)
‖Φu‖2

2 ≤ ‖AΛu‖2
2 ≤ ‖Φu‖2

2.

Since ‖u‖0 ≤ K, we can use the RIP to obtain
(

1 −
(

δ

1 − δ

)2
)

(1 − δ)‖u‖2
2 ≤ ‖AΛu‖2

2 ≤ (1 + δ)‖u‖2
2,

which simplifies to (10). �
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